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DEFECT IDENTIFICATION IN SILICON USING ELECTRON NUCLEAR DOUBLE RESONANCE
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ABSTRACT

The application of electron nuclear double resonance (ENDOR) for iden-
tification and characterization of point defects in silicon is reviewed.
Taking the vacancy and the boron-vacancy complex as examples it is discussed
how ENDOR can provide information on the atomic and electronic structure of
paramagnetic centers.

OUTLINE OF EXPERIMENTAL RESULTS

Electron Nuclear DOuble Resonance (ENDOR) is a spectroscopic technique
which, in ideal cases , unites the high sensitivity of Electron Paramagnetic
Resonance (EPR) and the high energy resolving power of Nuclear Magnetic Reso-
nance (NMR). Its application requires the simultaneous presence of an elec-
tronic and a nuclear magnetic moment in the defect to be studied. It is useful
to distinguish between self-ENDOR, in which a possible magnetic nucleus of a
constituent dimpurity of the center participates, and ligand-ENDOR with the
2933 nuclei (I=1/2) of the host crystal. Following its introduction by Feher
in 1959 [1,2], ENDOR examinations have been made for about 30 centers in
silicon, 1including the group V shallow donors, the chalcogen double donors,
several of the 3d-transition metal impurities, and a number of irradiation-
produced defects. Table I summarizes some of the relevant properties of these
centers. In the next paragraphs of this paper a discussion will be given on
the chemical nature of impurities forming the centers, and on their atomic and
electronic size and shape, as determined by ENDOR.

INFORMATION ON CHEMICAL CONSTITUENTS

ENDOR spectra are most conveniently analyzed using a spin-Hamiltonian,
such as

H= +uB§.§e.§ —gnuNﬁ.f+§.X.T + E(—gSiuNﬁ.fi+§.Xifi) (1)
i

representing the electronic paramagnetic energy in the magnetic field ﬁ,
interactions with one magnetic impurity isotope, with nuclear spin I, and the
interactions with several #”Si isotopes, Igi=1/2, on the sites i around the
center., For isotropic centers in high field approximation the energies are
given by

E = +ggupBmg —- gpunNBmr+amgmy + E(‘ESiUNBmIi+aimSmIi) (2)

The _ENDOR transitions for the impurity follow from the selection rules Amg=0,
Am7=+1, Amr;=0:

hv=| g uyB-amg | (3)
Likewise, the 29Si ligand-ENDOR frequencies Vv; are
hvi=|gSiuNB—aimsl (4)

An energy level scheme applicable to the boron-vacancy-complex in silicon,
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Table I. Summary of ENDOR studies of centers in silicon. V¥ is chemical
symbol for vanadium; all other characters V denote lattice monovacancy.

Center EPR- Spin Symmetry Self-ENDOR Ligand-ENDOR Refe-
spectrum isotope spin shells atoms rence
P 1/2  Cubic 3lp 172 5 30 1,2
32p 1 3
23 216 5
As 1/2  Cubic 75As 3/2 5 30 2
22 204 5
Sb 1/2  Cubic 121gp  5/2 5 30 2,4
123gp 7/2
17 166 5
Li Cubic 6ri. 1 30 6
©TLi 3/2
s+ 1/2  Cubic 333 302 8 58 7
Set 1/2  Cubic 8 66 8
Tet 1/2  Cubic 12 108 9
Tit NL29 3/2  Cubic 4713 572 17 214 10
(V¥)+ 3/2  Cubic Sly  7/2 11
crt 5/2  Cubic S3cr 3/2 11
Mn™ 1 Cubic 55Mn  5/2 11
Mot 5/2  Cubic 55Mn  5/2 11
Fe 1 Cubic 57Fe 1/2 12
6 42 13
Fet 1/2  Cubic 57re 1/2 12
FeGa 1/2  Trigonal STre 1/2 12
CrAu 3/2 Trigonal 19750 3/2 14,15
(MnAu)* 3/2 Trigonal 19750 3/2 14,15
(MnAu)~ 5/2 Trigonal 197z 3/2 14,15
PV G8 1/2  Monoclinic I 3lp 12 16
ALV G9 1 Trigonal 27z 5/2 17
AsV G23 1  Monoclinic I  /3As 3/2 18
Sbv G24 1/2  Monoclinic I 12lgp 572 18
A1t G18 1/2  Cubic 2741 5/2 1 4 19
B; G28 1/2  Monoclinic I 1B  3/2 20
vV G6 1/2  Monoclinic I 18 60 21
V- G7 1/2  Monoclinic I 33 106 22
V- G2 1/2  Rhombic I 51 152 23
BV G10 1/2  Triclinic 105 3 8 8 24
113 3/2
ov- Bl 1/2  Rhombic I 50 145 25

with S=1/2 and I=3/2 for the 11B isotope, is shown in figure 1, with EPR and
ENDOR (=NMR) transitions indicated. Figure 2 is the corresponding ENDOR
spectrum of six resonances, which consists of two groups of three lines
each. The three lines above the nuclear Zeeman frequency ghUNB are separated
from the three lines below by the hyperfine interaction; the structure
within the groups is due to nuclear quadrupole effects [24]. From
straightforward analysis of such spectra both the nuclear spin value I and
the nuclear moment follow, thus providing unambiguous identification of the
impurity and/or 47Si nucleus. In the example given, the hyperfine inter-
actions are too small to be resolvable in EPR [26]; as shown the enhanced
resolution of ENDOR is quite sufficient. Expression (1) is not necessarily
entirely adequate for analysis of the spectra. In the case of higher spin it
may be necessary to include quadrupole interaction, such as for Si:BV (see
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Figure 1. Level scheme for Si:BV, with S=1/2 and I=3/2 for the 1B isotope.
EPR and NMR (=ENDOR) transitions are indicated.

‘l—‘
n
N1

[ N S NN (N (N U N NN M Y W (N SN NN NONY DU SN N

11.00 1105 11.55 11.60

—= v (MH2)

Figure 2. ENDOR spectra of Si:BV. The highest-field EPR transition of the
Si-G10 spectrum was saturated with magnetic field parallel to [100] and
equal to 826.73 mT; microwave frequency 23.176 GHz.

figures 1 and 2), or higher order hyperfine terms, e.g. 1in the case of
Si:Tit., These additional interactions allow further characterization of the
center.



230

INFORMATION ON SHAPE

The point-group is the crystallographic characterization of the shape
of any defect. For single impurities on substitutional sites all symmetry
elements of the silicon crystal are retained in the fine-structure as
observed in EPR and the point—group is the cubic 43m. As table I shows, exam-
ples are abundant. A defect of complex structure may destroy all symmetry
elements of the host, which results in the lowest-possible triclinic symme-
try. There are few examples of this situation: Si-G10, associated with the
boron-vacancy complex Si:BV and iron-related spectrum Si-NL23 are the only
ones known so far. According to this point of view a symmetry classification
distinguishing eight different cases can be made. Coincidences in the reso-
nance positions, as resulting from the orientational degeneracy, are re-
vealed in the angular patterns and unambiguously determine the crystallo-
graphic system. Table II summarizes these symmetry aspects.

When studying ligand hyperfine interactions the combined symmetry of
defect plus “7Si nucleus is relevant. For a highest symmetry site of the

Si this may be the holohedral point-group of the defect; such sites do not
always exist and in genersl it will be a subgroup. With ENDOR, hyperfine
interactions with ligand 293i nuclei were determined in detail for several
centers. The negative lattice vacancy, Si:V~, which has rhombic I, point-
group 2mm symmetry, may serve as an example. Depending on the 4”Si position
with respect to the two inequivalent mirrorplanes of the vacancy, the
symmetry will remain rhombic I, or will be lowered to monoclinic I or
triclinic, Figure 3 illustrates this behavior. With ENDOR the symmetry
classification of a center, usually already known from EPR, can be confir-
med. The excellent resolution and the availability of many shells of hyper-
fine atoms eliminates the risk of accidental degeneracies.

Table II. Symmetry classification of centers in silicon.

System Point-group(s) Resonances in direction
<100> <111> <O011>

Cubic §3m,23 1 1 1
Tetragonal 42m,4 2 1 2
Rhombic I 2mm 2 2 3
Rhombic II 222 3 1 3
Trigonal 3m,3,3m,3 1 2 2
Monoclinic I 2/m,m 2 3 4
Monoclinic IT 2 _ 3 2 4
Triclinic 1,1 3 4 6

INFORMATION ON ELECTRONIC SIZE

The isotropic part of the hyperfine interaction arises from the contact
interaction. It is related to the s-part of the defect's electron wavefunc-—
tion at position rj by

a = (Ho/4m)(81/3)genpgnuy|(ri) |2 (5)

Assuming, although no general proof is available , a monotonic decrease of
the wavefunction with distance to the center within symmetry classes, an
ordered density distribution |U(rj)|2 of the defect electron is obtained.
Data for the negative vacancy in silicon are presented in figure 4a, togeth-
er with an empirical fit of these data by the exponential relation

V2 = Azexp(-Zr/ro) (6)



231

(100} 0 011 1hoo) (111 1011}
0.40 I N NN N I R B | 0.40 3 1 . L1 by
= 4T | < 16
I I 7
b I o z
r o I - $o o
> ] > o
0.35— -0.35 i
] - ]
B B 7 7
0.30— H0.30
- - 6—| 6
i B ]
i
v 0.25 T 1T T T 1T T 1 0.25 s T 1T T 1T 1T T T IS
0 10 20 30 40 S0 60 70 80 90 0 10 20 30 40 SO 60 70 80 90
—— J(degrees) ——— J(degrees)
H Symmetry 2mm, rhombic I Symmetry 1, triclinic
1
{
100} [RY)} lon) 100} nl 011}
200 I S T Y | 200 P TS S i ER 1.3
I~ Mad1 - i~ — Mbc? -
v I T - T — -
| = 4 L = L
R u = C
i >190— 190 1.2+ 1.2
P> — - > — —
i i L B L
| l L i [
v |iso —180 11— 1.1
{10+ —170 1.0~ 1.0
160 T T T 1 160 0.9 LR, A A N AR 0.9
0 10 20 30 40 SO 60 70 80 90 0 10 20 30 40 SO 60 70 80 90
——=— Jldegrees) —— Jldegrees)
Symmetry m, monoclinic I Symmetry m, monoclinic I
mirrorplane m mirrorplane
( P 2a’ ( P m )

Figure 3. Angular dependence of the ENDOR frequencies for the triclinic,
monoclinic I and rhombic I class shells of the negative vacancy in silicon.

The pre-exponential density parameter A2 and the characteristic decay length
r, for the match as shown are given in table 3, which also contains the
results of the corresponding analysis for the divacancy in positive and
negative charge states, For these typical deep level defects the characte-
ristic electronic range is near 2 to 3.10"10 p, This figure gains perspec-
tive by comparing with the value 15 to 20.10'10 m which the effective mass
theory predicts for shallow donor levels. The inequivalence of the two
mirrorplanes is clearly demonstrated in the strong preference of the plane
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labelled maq, which has A2=10, over the plane mp. with A2=0.1. Rather than
being isotropically distributed, the vacancy electron is concentrated in one
plane. Also on an empirical basis the plot as presented in figure 4b was
made. It was noted that several of the hyperfine tensors in the Mad class
have a very similar structure, suggesting a direct and simple relation
between them. A plot of the isotropic part of these tensors as a function of
distance to the vacancy along a [011] chain results in nearly perfect expo-
nential decay. The characteristic range 4.7.107*"Y m indicates a markedly
enhanced extension in this particular direction [23].

Table III. Parameters describing the wavefunc-
tions of the vacancy and divacancy in silicon.

Defect Class A2 Ty
(10‘24 cm'3)

V- Mad 10 2.4
Mbc 0.1 3.0
G 0.6 3.2
A\ Mad 3.3 4.7
LA M 2 3.0
G 1.1 2.6
v+ M 7 1.9
G 4.3 1.9
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Figure 4. Probability density for the wavefunction of the negative vacancy
as a function of distance to the vacant site, (a) for ordering within each
symmetry class, (b) with preferential ordering along a [0l1] chain for
specific tensors in the Mad class, as discussed in reference 23.
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INFORMATION ON ELECTRONIC STRUCTURE

The analysis of the hyperfine interactions for Si:V~ indicated a very
small spin density in the mirrorplane mpc. This result is to be interpreted
as a virtually vanishing spin density, a situation which then slightly is
perturbed, as will be discussed. A zero value for the s-part of the spin
density on the mirrorplane mp. implies odd symmetry, character -1, for
reflection with respect to this plane. Even symmetry, character +1, for
mirrorplane myaq is implied by the strong contact interaction with 29g3
nuclei in this plane. Only the irreducible representation bj of point-group
2mm 1is consistent with these requirements. From ligand-ENDOR the symmetry-
type of the wavefuction can be deduced in this way. For the present example
of Si:V~™ the conclusion agrees with the electronic model which constructs a
defect wavefunction as an LCAO of the sp3—hybridized dangling bonds a, b, c
and d on the four nearest-neighbors of the vacancy [27]. Figure 5 illus-
trates the occupation of levels and orbitals by the 5 electrons of the
negative vacancy.

An explanation of the small non-vanishing a-value can be found in a
many-electron description. The 5-electron ground state as illustrated in
figure 5 is given by the wavefunction y=|ajajafa{b;>, with s mmetry-label
2By, _Excited states _ with_ the same symmetry are Uj=|ajaibjboby>,
Uy=|alfalby bybs>, U3=|aial'b;byby> and Vy=|alalbiboby>. In an improved de-
scription of the defect electrons these excited states will be admixed into
Vy. The configurations VY3 and Y, have a non-zero spin density on the bc-
plane, as the spin of the electron in the a] orbital will not be cancelled
by the opposite spin in the aY orbital. Exchange interactions are responsi-
ble for unequal admixture of the Y3 and y; excited states. Although a
theoretical estimate of this polarization phenomenon has produced good
agreement [28], much of the quantitative understanding is still to be a-
chieved .

Qp—t——Db+C
L3m 42m L2m  2mm
v V° Vv

Figure 5. LCAO level scheme of the vacancy in silicon for various charge
states, after Watkins [27].
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INFORMATION ON ATOMIC STRUCTURE

So far, only the isotropic part of the hyperfine tensors has been
considered. However, for the traceless anisotropic part, a more ready inter-
pretation in terms of dipole-dipole interaction between the electronic and
nuclear magnetic moments is sometimes applicable. As an illustration the
Si:BV-complex is considered. The hyperfine tensor X as measured for the
interaction with the borgn impurity in the complex is decomposed into scalar
part a and dipolar part % by A=al+B.  Table IV gives the relevant numerical
values. It is observed that tensor ﬁ is nearly axial, and may be approxi-
mated by an axial tensor with principal values (Bj,Bp,B3) = (+690kHz,
-345kHz,-345kHz). Such an interaction tensor is consistent with a distant
dipole-dipole interaction, which is easily calculated in a point-dipole
approximation. From the ENDOR data the electronic spin distribution is
already known in some detail, e.g. in this case about 557 of the unpaired
electron is localized gn the dangling bond on atom a in figure 6. The axial
direction of tensor %, given by the direction cosines [-0.792,-0.609,
+0.038], coincides with the orientation of the position vector of the boron
atom; the magnitude of the principal values is related to the distance
between the nuclear moment and the electronic center. On the basis of these
arguments the two most probable boron lattice sites are B and B', as indi-
cated in figure 6. Between the two sites, which are in opposite direction as
seen from the vacancy in the origin, no distinction can be made. The hyper-
fine tensor constants calculated for the sites B are included in table IV.
They are considered to be in good agreement with the measured values.

[071

Figure 6. Atomic model, not showing all distortions, for the boron-vacancy
complex in silicon. Probable positions for the boron atom are marked B and
1
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Table IV. Hyperfine parameters for the B-atom, isotope 11B,
in the boron-vacancy complex, after Sprenger et al [24].

i Ay Direction cosines a Bi,exp Bi,calc
(kHz n[100] n[010] n[001] (kHz) (kHzg (kHz)

1 +537 -0.792 -0.609 +0.038 =154~ +691 +491

2 -459 -0.584 +0.774 +0.243 -305 -246

3 -541 -0.177 +0.170 -0.969 -387 -246

SUMMARY

The elucidation of the atomic and electronic structure of point defects
in silicon by ENDOR was discussed, with illustrative arguments taken from
studies of the negative lattice vacancy and the boron-vacancy complex. It
was shown that from ENDOR an identification of the impurities in the center
is obtained, the point-group symmetry of the defect is established, and the
symmetry-type of the wavefunction is determined. In addition the characte-
ristic range of the defect electron is measured with sometimes very detailed
information on the angular distribution. Atomic coordinates as derived from
ENDOR data may assist in postulating specific atomic models.
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